
SWE 637 Software

Testing
Activities, week 3

Unit Testing with JUnit

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Class Activity #3

Consider the Point class

◦ What should the implementation of
equals() look like?

◦ Develop some JUnit tests for equals()

◦ Develop some parameterized

(data-driven) JUnit tests for equals()

◦ Develop some JUnit theories about equals()

 hint: overriding equals() means you must override

hashCode() also

class Point
{

private int x;
private int y;

public Point(int x, int y)
{

this.x=x;
this.y=y;

}

@Override public boolean equals(Object o)
{

// What should the implementation be?
}

}

Focus on what you want to test, not the JUnit syntax

Class Activity #3 - Answers

Possible implementation

of equals()

class Point
{

private int x;
private int y;

public Point(int x, int y)
{

this.x=x;
this.y=y;

}

@Override public boolean equals(Object o)
{

if (!(o instanceof Point))
{

return false;
}
else
{

Point p = (Point) o;
return (p.x == this.x) && (p.y == this.y);

}
}

Class Activity #3 - Answers

JUnit tests for Point.equals() public class PointTest
{

@Test
public void testEquals()
{

Point p1 = new Point (1, 2);
Point p2 = new Point (1, 2);
Point p3 = new Point (-1, 99);

assertTrue (p1.equals(p1));
assertTrue (p1.equals(p2));
assertFalse (p1.equals(p3));

assertTrue (p2.equals(p1));
assertTrue (p2.equals(p2));
assertFalse (p2.equals(p3));

assertFalse (p3.equals(p1));
assertFalse (p3.equals(p2));
assertTrue (p3.equals(p3));

}

Class Activity #3 - Answers
Parameterized tests for Point.equals()

@RunWith(Parameterized.class)
public class PointParameterizedTest
{

// Define test inputs
public int x1, y1, x2, y2;

// Define expected output
public boolean isEqual;

// Create a constructor to set up the
// parameterized data
public PointParameterizedTest(int x1, int y1,
int x2, int y2, boolean isEqual)

{
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
this.isEqual = isEqual;

}

@Parameters
public static Collection<Object>[] params()
{

return Arrays.asList(new Object[][] {
{ 1, 2, 1, 2, true },
{ 1, 2, -1, 99, false },
{ -1, 99, -1, 99, true },
{ -1, 99, 1, 2, false }

});
}

@Test
public void testEquals()
{

Point p1 = new Point (x1, y1);
Point p2 = new Point (x2, y2);
assertEquals (isEqual, p1.equals(p2));
assertEquals (isEqual, p2.equals(p1));

}
}

SWE 637 Software

Testing

System Testing with Cucumber

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Boeing 737 MAX MCAS System

Maneuvering Characteristics Augmentation System (MCAS)

Automatic system intended to prevent excessive nose-up aircraft

attitude which can lead to aerodynamic stall

Boeing 737 MAX MCAS System

MCAS takes 3 inputs:

◦ Autopilot status (on/off)

 MCAS is only active when the autopilot is off and the pilot is

hand-flying the aircraft

◦ Flaps position (up/down)

 When lowered, flaps allow the aircraft to fly slower

 MCAS is only active when flaps are up

◦ Angle of attack (AOA)

 Angle of the wing relative to the airflow

 Wing will stall (stop generating lift) if the AOA is too high

 MCAS activates when AOA is high and activates the electric

trim system to push the aircraft nose down to reduce AOA

Boeing 737 MAX MCAS System

Measuring AOA

◦ The 737 has one AOA vane on each side
of the nose

◦ MCAS (in 2018/2019) used only the pilot’s
side AOA vane

AOA vane troubles

◦ On the Lion Air flight, the AOA vane had
not been properly calibrated after
replacement

◦ On the Ethiopian Airlines flight, it is likely
that a bird strike during takeoff damaged
the AOA vane

◦ Both aircraft thought the AOA was too high

Boeing 737 MAX MCAS System

AOA vane failures and trim system failures happen, and

they’re part of flight training

MCAS can be disabled by flipping off the trim switches

◦ The Lion Air pilots

never disabled the

trim system

◦ The Ethiopian

Airlines pilots did

disable the trim

system, but then

re-enabled it

Boeing 737 MAX MCAS System
Inactive

Armed
Flaps Down

Autopilot On

Flaps Down

Autopilot On

Autopilot

Off / -

Autopilot

On / -

Flaps

Down / -

Flaps

Up / -

Autopilot

Off / -

Flaps

Up / -

High AOA

/ Trim Down

5 Sec.

Timeout

/ Trim Down

Simplified MCAS

state diagram

Autopilot

On / -

Flaps

Down / -

Autopilot

On / -

Flaps

Down / -

Normal AOA

/ -

Active

High AOA / -

Normal AOA / -

Testing MCAS with Gherkin

Using the Gherkin system test language, design a system test to

verify that MCAS activates (that is, produces a trim-down input) as

desired

Scenario: McasActivates
Given …
When …
Then …

Testing MCAS with Gherkin

Scenario: McasActivates
Given flaps are up
And autopilot is off
When AOA is high

Then MCAS trims nose down

And MCAS delays for 5 seconds

Testing MCAS with Gherkin

Using the Gherkin system test language, design system tests to

verify that MCAS does not activate when it should not

1. When flaps are down

2. When auto-pilot is on

3. When AOA is normal

Testing MCAS with Gherkin

Scenario: McasDoesNotActivate
Given …
When …
Then …

Scenario: McasDoesNotActivate
Given …
When …
Then …

Scenario: McasDoesNotActivate
Given …
When …
Then …

Testing MCAS with Gherkin

Scenario: McasNoActivateWhenFlapsDown
Given flaps are down
And autopilot is off
When AOA is high
Then MCAS does nothing

Scenario: McasNoActivateWhenAutopilotOn
Given flaps are up
And autopilot is on
When AOA is high
Then MCAS does nothing

Scenario: McasNoActivateWhenAoaNormal
Given flaps are up
And autopilot is off
When AOA is normal
Then MCAS does nothing

